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A new explicit time stepping scheme for electromagnetic simula-
tions is described, the neo-finite-difference method, This numerical
method which describes the time derivative as an arc instead of a
straight line is more accurate. Thus, larger time steps ¢an be used
than with the standard leapfrog method. We start by Fourier analyz-
ing the electromagnetic field in space. The Fourier amplitudes obey
harmonic oscillator equations in time. The method involves approxi-
mating the time advance of a mode’'s amplitude from oscillator
solutions for its estimated frequencies. From a computational point
of view this involves replacing At by 2sin[wfkIAH/2)/wfk) in the
finite difference equations, where w{(k} is the estimated frequency
of mode k; that is, At is multiplied by a kdependent correction
constant. The method not only improves the accuracy of the time
stepping algorithm, but it increases the size of At for which it is
stable. The ion-ripple laser is used as an example of a neo-finite
difference electromagnetic simulation application 1o ilfustrate the
new scheme. The size of the time step in the new scheme may be
chosen one order of magnitude larger than for the standard method.
The new scheme does not change the computation time per time
step and only requires slight changes to the original code. o 1985
Academic Press, Inc.

I. INTRODUCTION

The limitation on the size ol time step for a stndard electro-
magnetic simulation is cither the Courant—Friedrichs—Lewy
condition | | -6] for a simulation solving wave equations in finite
spatial grids or the stability condition of ordinary differential
equations in Fourier space. The size of the time step required
not to violate the stability condition may be much smaller than
that needed to resolve the time variation of physical guantities.
This makes standard simuiation slower.

There are some cfforts toward trying to use a larger time
step. Consider the case of a particle executing circular motion
under an external longitudinal magnetic field. In order to have
the correet gyrophase and gyroradius, correction conslants have
been added into the particle’s equation of motion and the ampli-
tude of its velocity [5, 7, 8). This application is limited to gyro-
motion and is not related to the stability conditions. The other
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case is that of light waves propagating in a vacuum [9-11].
Light waves can be divided into left-going and right-going
fields. They are advanced in time with the speed of light to
assure a correct phase change. This is only applicabie when
the effect of the medium is not important and the directions of
the wave propagation are well oriented.

We propose here a new scheme for electromagnetic simula-
tions. This explicit scheme corrects the errors of the standard
field solver and improves the accuracy and stability of
the time integration procedure by employing our neo-finite-
difference method, which can be applied to wide areas of
numerical computation and will be published in a separate
paper [15]. In this new scheme, a fast Fourier transform in
space is used, and the standard leapfrog time integration is
improved. In the next section, we explain the problem of
the old field solver. Then, the new scheme is presented. In
Section Iil, we test this new electromagnetic simulation
scheme. The ion-tipple laser [14] is used as an example.
The frequency error of electromagnetic waves in the old
scheme is eliminated in the new scheme. The accuracy is
greatly improved. So, the size of the time step for an
electromagnetic simulation using the new scheme is no longer
restricted by the usual stability condition. The size can be
much larger. Section IV is the summary and discussion,

I1. THEORY OF THE NEW
ELECTROMAGNETIC SCHEME

We assume a periodic system and, hence, we cant work in
Fourier space. Electromagnetic waves interacting with a plasma
are described by Maxwell’s equations,

aB -

= itk X E, I
a ()
9E _ ik x & — 4x]. (2)
at

wherc E(I}) are the electric (magnetic) fields of the waves, }(k)
is the plasma current responding to the wave, ¢ is the speed of
light, and we have assumed that the fields are of the Fourier
form (E, B, I} = (£, B, De™*,
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If space charge effects are included, we also need Poisson
equation,

k - E = 4ngn(k), 3)
where n(k) is the charge density of mode k, and g is the particle

charge. To obtain the plasma response, we use the equation of
particle motion,

Q—q(E-I-

vXB
roe)

C

where P = ym,v is the particle momentum, m, is the rest
mass, ¥y = (1 — |v|*c?) ™ is the Lorentz factor, v is the
velocity, and J(x} = gn(x}v is the current. Equations (1)—(4)
are nonlinear so that analytic solutions for interesting nonlinear
situations are rare. However, we may still be able to estimate
fairly accurately the frequency of each k mode for the purpose
of the new time-differencing method; this is particularly true
for the large & modes that are most limiting for the time step
size. By using the standard finite difference method, for a single
wave, Egs. (1) and (2) can be expressed as

§n+l1‘2 _

Bt = —jk X E"c At, (5)

Ertl Er=i [k X Brtuz 4 4m
c

IJ'Fn+1,'zi| cAr,  (6)
where the leapfrog integration method is employed.
For a transverse wave (k - E = 0), which can be Fourier

analyzed in time (i.e., (E, B, J) = (E, B, J)e=™), Egs. (1) and
(2) give

E
E_. p-2
w LCB, (N

4
E =B+ k—”J Bl (8)

where «F is the correct wave frequency of Maxwell equations.
Equations (7) and (8) are the exact dispersion relation and are
determined by the plasma properties.

In the finite difference treatment, Eqgs. (5) and (6) give

@At ke AtE _ ke At|B — (4milke)]|
S 3 = 5 B = ) E ’ (9)
or
L2 e £ Ar
Wi = sin 7 (10)

where w;,, is the wave frequency of mode & from the simulation
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FIG. 1. The magnetic field is advanced by the new scheme (AC) and the

old scheme (AD), respectively.

using the standard finite difference method, E = E|, B =B,
J = |J|, and k = |Kk|. For a small time step (i.e., o* Ar < 1),
the numerical dispersion relation, Eq. (10), gives wi, ~
wf[1l + (wf An*/24]. The standard finite difference method
not only makes an error on the wave frequency but it is also
responsible for the stability condition. As indicated in Eq. (9),
if ke At/2 > min{B/E, E/|B — (4milkc)J |}, the wave frequency
of simulation becomes a complex number. Thus, the wave fields
grow exponentially. This numerical instability is due to the
inaccuracy of the standard time-differencing. Although the sys-
tem can become stable by truncating short wavelength modes
and/or decreasing the size of time step, the frequency error is
always there.

The problem with the old scheme can also be described by
Fig. 1, which is in the phase plane for a linearly polarized wave
and in the transverse spatial plane for a circularly polarized
wave. The differential equation (e.g., Eq. (1)) follows the exact
trajectory of an arc (i.e. A/E‘), but the standard finite difference
method follows a straight line. While the driving term (the
right-hand side of Eq. (5)) gives an arc AC the standard finite
difference method (the left-hand side of Eq. (5)) advances the
magnetic field to B7*'2 (OD) by a straight line AD whose
length is equal to the arc length such that the phase advance
is not correct. The wave frequency of the old scheme i, is
greater than the correct frequency o®. We correct this error by
using the neo-finite-difference method; that is,

[ w® At/2

W aWE  pypeti g2y = —jk X BN
sin(wEAzfz)] (B~ BT =~k x B (1)
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where w® depends on the plasma property. The frequency can
be calculated from Eqs. (7) at each time step or estimated by
Eqgs. (7) and (8) (the knowledge of the ptasma property). Equa-
tion (11) (Eq. (12)) advances the magnetic field (the electric
field) by an arc (i.e., AC). Equations (11) and (12} can also be
expressed by

- g el i E
Bn-HﬁZ ‘ Bn—l.’2 =—jkX E¢ Ar [W] s (13)

Fntl E"n = [k % grri

armi - sin(wf Ar/2)
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Equations (13) and (14) make the difference term smalier (i.e.,
AC) and give the wave frequency of mode £,

Wor = @F, (15)

where the wave frequency is correct and shows the stability
of the new scheme. This new field solver corrects the wave
frequencies and, hence, phase errors. The accuracy is improved.
Also, the size of the time step can be made much larger without
numerical instability setting in. The limit on the size of the
time step depends on the resolution of the electromagnetic wave
frequency of interest and approximations made in calculating
J. Larger time steps cause a decrease of resolution. If the
estimated wave frequency is not accurate, an overestimated
correction constant, (w® Af)/2 sin(w® At/2), used in Eqs. (11)
and (12) does not cause numerical instability, while an underes-
timated one may cause it, especially for f Ar ~ (m + 1) 7,
where m is an integer (aliasing).

Previous studies [5, 9, 10, 11] rotate the electric field and
the magnetic field together for each mode, according to the
phase change in a vacuum. Their electric and magnetic fields
are at the same time step. Our method is a leapfrog one which
makes it more accurate and it also includes dispersive effects
of the plasma. The fields at pre-advanced steps and at advanced
steps (e.g., E” and E™! in Eq.(14), respectively) have the same
{unit) coefficient but the earlier treatments do not (e.g., the
coefficient for E" in Eq. 15-9b (3a) of Ref. [5] is cos ck At
when E**' is unity, which induces error). Their method has
also under estimated the correction constant needed. We note
that in the limit of no plasma both methods are exact. However,
plasma is always of concern and our scheme can be applied to

that regime. Furthermore, the two methods are different in
concept and our method is much more general, All we need to
know for the new scheme is the linear dispersion of the waves
in plasma, which can often be obtained from linear theory
or from a short test run. In the next section we will discuss
electromagnetic waves in an unmagnetized plasma, for which
the dispersion relation is w® ~ (K’ + w})'"%, where w,, is the
plasma frequency.

The methed is also being successfully applied to simulations
of a multidimensional magnetized plasma with ions and elec-
trons [13]. For any given &, the highest frequency mode of the
plasma is the R-wave, followed by the X-wave. That treatment
makes corrections to the field solver using the wave frequency
estimated from their linear dispersion relation, evaluated for the
each given value of k. Since this method follows the linearized
solutions, the accuracy is greatly improved. Thus, we can in-
crease our time step size about fivefold.

III. SIMULATION OF THE NEW
ELECTROMAGNETIC SCHEME

We have imposed the new field solver on a periodic relativis-
tic 1 2/2 D particle-in-cell simulation code [12]. This only
needs to change two statements for the form factor in the time
stepping for the fields by replacing At by At - sin{ew® At/2)/
{wf At/2). The computation time per time step does not increase.
This simulation code uses the improved leapfrog integration
on temporal differences and the fast Fourer transform and
subtracted dipole interpolation on spatial differences. A
Gaussian shape is assigned for the simulation particles. A unit
length is a grid size. Time is normalized to w,,!, where @}, =
(dmrn,e?/m, is the plasma frequency, n, is the electron density,
and m, is the electron mass.
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FIG. 2. An ion-ripple laser configuration.
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FIG. 3. Compare the frequency errors induced by the old scheme and the
new scheme.

The physical problem chosen to test the code is the ion-
ripple laser |14}, which is a new concept to generate coherent
tunable microwaves to X rays with the appropriate choice of
parameters by using a relativistic electron beam obliquely pass-
ing through an ion ripple in plasma. The electric field of the
ion ripple has a component transverse to the beam direction as
shown in Fig. 2, where k;, is the wave number of the ion ripple
and k, = k;, - cos 8. The transverse electric force causes the
beam electrons to radiate. As the beam velocity, vy, is much
greater than the modulated transverse velocity v,, the problem
can be assumed to be one-dimensicnal. The dispersion relation
has been derived [14] as

EemEes = Cf: (16)
where
Eom = ©° — K'C? — @/ Ve, (17
Eos — (w - kpuﬂ)2 - (wze + 3kivg)/78’ (18)
C;= kil /4y, (19}

Yo is the beam’s initial y, v, ¥ 1, v, is the thermal velocity
of beam. Putting &, = 0 gives the dispersion relation for
electromagnetic modes in a uniform plasma; g, = 0 is the
dispersion relation for electrostatic modes for wave numbers
» = k + k, (conservation of momentumy) in a uniform plasma.
C;is the coupling factor for electromagnetic modes and electro-
static modes due to the ion ripple. The radiant wave frequency

can be determined by their intersection; that is, w,, = w,
{conservation of energy), where w., = (k%> + wh/v,}'" is the
frequency of an electromagnetic mode, w,, = k,vy — § is the
frequency of slow electrostatic beam mode, and § = (w}, +
3k2vH"* v The coupling factor provides the source of insta-
bilities and a small variation to the radiation frequency.

The physical parameters to be simulated are v, ~ 3, 6 =
45°, kelw, = 1.6, and &, = 0.3. The simulation system’s
parameters are the system length L = 1024, ¢ = 26, the particle
size ¢ = 0.6, number of electron particles = 10,240, the ions
do not move, and the Fourier modes that are kept ran from 0
to 256; this gives the maximum wave number k,, = a/2.
The estimated wave frequencies to be used in the neo-finite-
difference form factor of Egs. (11) and (12) are taken to be
of = w,, = (K¢ + wl/yy)'". We may also calculate the wave
frequencies from Egs. (7) at each time step. However, the
formula of estimated wave frequencies that we use here is
simple and only requires us to change two statements of the
form factor of our existing simulation code. This change does
not cost any computation time per time step because the iteration
loop remains the same.

The simulation system is initialized in equilibrinm. At ¢ =
0, the total energy is TOT ~ 3 X 107, the total electrostatic
energy is TEL ~ 6 X 10, the total electric energy of electro-
magnetic modes is TET ~ 1X 10% the total magnetic energy
of electromagnetic modes is TEB ~ 1 X 10°, and the total
kinetic energy is EXK ~ 3 X 1. Using the standard leapfrog
method and the size of time step Ar = 0.06 (i.c., ¢ Az ~ 1.56,
which violates the Courant condition), we observed a very
strong numerical instability. All energies grow exponentially.
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FIG. 4. The dispersion curves of slow electrostatic mode, exact electro-
magnetic mode, and old scheme simulation’s electromagnetic mode.
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Att =6, TOT ~ 6 X 10", TEL ~ 2 x 105, TET ~ 4 X
10", TEB ~ 2 X 10" and EXK ~ 1 X 10%, As we apply
the new scheme with the same size of time step, energy is quite
well conserved. The error in total energy is within 0.1% after
5000 time steps.

Figure 3 is shown to compare the errors of an electromagnetic
wave (mode 125 (k¢ ~ 19.94)) frequency induced by the stan-
dard finite difference scheme and neo-finite-difference scheme.
The frequency error induced by the old scheme is as the predic-
tion of Eq. (10). The new scheme with the neo-finite-difference
method has almost eliminated the frequency error completely,
such that it can make the size of time step much larger.

The frequency errors of simulation also produce incorrect
physics results such as radiation spectrum. The radiation fre-
quency of ion-ripple laser is near the intersection of the electro-
magnetic mode and the slow electrostatic mode. This is at (w,,,
k.) of the dispersion diagram (w, k) as shown in Fig. 4. But
due to the errors of electromagnetic wave frequency induced
by the standard time-differencing, the simulation of old scheme
will move the interaction point to {w,, &%,). The shift of radia-
tion spectrum can be severe because the dispersion line of the
electrostatic mode is very close to the dispersion curve of the
electromagnetic mode, especially for a relativistic beam case.
We show the shift of intersection points by the old scheme
simulation in Fig. 5. The intersection points of the simulation
are at

0= wim — Wy = (wsem - wem) - (we.s - wem) (20)
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FIG. 5. The shifts of intersection points in the old scheme simulation.
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FIG. 6. The growth rates and radiation spectrums observed from the old
scheme and the new scheme. The solid line is calculated from the theoretic
disperston relarion.

The curve of w, — w,, is nearly a straight line and
independent of the size of time step. The frequency error
of simulation by the old scheme is approximately increased
by the square of the size of time step. The larger is the
size of time step; the smaller is the wave number of the
intersection point. Figure 6 gives a very consistent result as
indicated in Fig. 5. The shift of the radiation spectrum is
about 40% compared to the old scheme using Az = 0.06
{where we eliminated certain high k& modes to make the
simulation stable), while Ar = 0.005 provides a correct
radiation spectrum and growth rates. The new scheme gener-
ates good specirum and growth rates by using larger sizes
of time step, which are about one order of magnitude larger
than that required by the old scheme. A typical run of the
1 2/2 D jon-ripple laser simulation needs 1 ~ 4 X 10° for
the waves to saturate. With the old scheme it takes about
30 h Cray time. Now, it costs about 3 h Cray time.

IV. SUMMARY AND DISCUSSION

The new time-differencing with the neo-finite-difference
method is applied to a spectral elecirornagnetic simulation. The
new scheme improves both accuracy and stability. In fact, it
is theoretically unconditionally stable. The size of the time step
is not restricted by the stability condition of standard spectral
methods. The limitation on the time step will only depend
on the temporal resolution requirement of physical quantities,
which do not cause numerical instability.
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Before we test the new scheme, the errors of electromagnetic
wave frequency induced by the old scheme in particle-in-cell
simulations are estimated. The simulation results show that
their errors are about the same as the errors predicted by the
estimation. A strong numerical instability occurs as the size of
time step in the old scheme simulation is too large to satisfy
the stability condition of the standard time-differencing method.
The numerical shifts of the radiation spectrum in an ion-ripple
laser are observed in the old scheme simulation and are due to
the frequency errors. As our new scheme corrects the frequency
errors, a stable numerical simulation has been achieved and the
radiation spectrum is shown to be correct, even when a large
time step is used. In our example, the size of time step in the
new scheme can be one order of magnitude larger than the one
in the old scheme (about 3 h Cray time per typical run instead
of 30 h).

This new scheme does not increase computation time per
time step because we only need to change two statements
concerning the form factor in our existing code.
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